The wrong kind of SNOW?

When ice, snow and frost start, British Rail steps — or so it seems. Roger Bradley looks at the problems that severe weather presents for electric railways, and how other countries have come to grips with keeping the winter trains on time.

Sub-zero success story

ABO Traction, the new rail supplier of electric rolling stock to the South Western mainline in the UK, has long experience of designing and building vehicles for electrically operated services. Vehicles from the ABO-Traction family are fitted with the following measures:
- Powerful traction drive - no electrical machines with reactive power, no contactor and no motors, no protective equipment.
- Electric heating of a central automatic system.
- Central control system for all the equipment in the train
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train.
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train.
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train.
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train.
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train.
- Solar heating of a central automatic system.
- Central control system for all the equipment in the train.
- Solar heating of a central automatic system.

A new approach to the problem of keeping trains running in the most severe weather conditions is being developed at ABO Traction. The company has demonstrated the effectiveness of its system in a prototype test rig, and is now ready to offer it for use on production trains.

The system is based on the use of solar energy to provide the necessary heating and lighting for the train. The system is designed to work in conjunction with the existing electrical supply, and is capable of operating in temperatures as low as -30°C. It is also capable of providing power for lighting and other electrical needs.

One of the key advantages of the system is its ability to operate in a wide range of weather conditions. The company has conducted trials in temperatures ranging from -30°C to +40°C, and has found that the system performs well in all conditions.

The system is also designed to be flexible, allowing it to be adapted to different types of trains and different operating conditions. It is suitable for use on both new and existing trains, and can be installed on a range of different types of equipment.

The system is currently being tested on a range of prototype trains, and the company expects to have it ready for use on production trains in the near future. The company is also working on further developments to improve the system's performance, including the use of renewable energy sources.

The system is designed to be cost-effective, with the electricity required for operation being provided by the existing electrical supply. The system is also designed to be easy to install and maintain, making it an attractive option for railway operators.

The company is now actively seeking opportunities to market the system, and is confident that it will find a market due to its unique combination of features and benefits.